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ABSTRACT

Representation learning and deep learning on data provenance
graphs has yielded insightful new angles for intrusion detection in
cybersecurity systems and is rapidly expanding as a research topic
in the scientific community. In order to train the learning models,
system execution data must be created and captured which rep-
resent realistic cyberattacks of a wide variety. Furthermore, these
graphs must contain equally authentic benign workflows relative to
the host and its multi-faceted processes. In order to support dynamic
generation of provenance graphs to rapidly train new provenance
graph learning models, we present Flurry, an end-to-end frame-
work which simulates attack and benign activity and generates
provenance graphs in multiple formats exportable to graph learn-
ing systems. In this demonstration, we showcase Flurry’s ability to
simulate both pre-configured and user-defined cyberattacks as well
as benign behavior, and convert these captures into provenance
graphs. We investigate the spectral properties of these graphs and
perform attack classification experiments comparing three graph
neural network models. Our results are comparable to those in the
original learning models’ research papers, showing that the Flurry
graphs provide an ideal baseline and an extensible framework for
graph representation learning on provenance graphs. In our demo,
we show that Flurry will bring brand-new expandability and pro-
ficiency to the provenance graph learning community’s available
data.

CCS CONCEPTS

• Security and privacy → Intrusion detection systems; • Infor-
mation systems → Graph-based database models; Extraction,
transformation and loading; • Computing methodologies →
Knowledge representation and reasoning; • Social and professional

topics → System management; • General and reference →
Experimentation; Verification.
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1 INTRODUCTION

Data provenance, or the legacy of data on a system, has long
been a tool for cybersecurity practitioners to forensically inves-
tigate anomalous system execution. Directed, acyclic graphs are
constructed from provenance data in order to perform causality
analysis. Recently, provenance graphs have risen to the forefront
of representation learning [3–5, 13]. Symbiotically, provenance
graphs provide a multi-layered, heterogeneous problem to graph
representation learning researchers, and learning systems provide
new insight and a quicker response to resilient systems and secu-
rity practitioners. Thus, continuing research in provenance graph
representation learning is promising for both communities as an
innovative and practical way forward.

In order to make this progress, data provenance graphs are
needed to train and test new models. It is a systematic process to
capture system execution, log data, and interpret it into a node/edge
schema. But there are several properties which make data genera-
tion a hard and more complex problem in the real world than the
current public datasets [3, 4, 6, 10] represent. A threat actor will try
several avenues at multiple entrypoints into a single or distributed
system in order to gain a foothold. Generally, once an attacker
is able to gain a single access, they may establish some backdoor
which will allow for further exploitation. Thus, an attacker needs
only to succeed one time at only one of the ways they may try to
strike, while security professionals must be prepared to guard and
adapt at all points simultaneously.

With this common attack pattern, setting up datasets which
model only one style of attack is not realistic and can lead to mis-
conclusions and ultimately a false sense of security. Attacks do not
happen in isolation and there may be multiple threat actors or at-
tacks occurring simultaneously on a real system. Additionally, there
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is usually a wealth of benign activity, both related and unrelated
to the attack, on the system which is being threatened. Relying on
static datasets is also inevitably outdated as new vulnerabilities are
discovered daily. Models require a large amount of both benign and
sometimes malicious data in order to learn common patterns for
classification.

Because of these properties of real-world security threats, a
system is direly needed which can simulate multiple attacks mixed
with benign traffic, quickly expand to new and emerging threats,
and generate a wealth of replicable data. Flurry provides all these
things to the provenance graph research space in a simple package
usable by anyone in the community, from security specialists and
data scientists.

The contributions we demonstrate that Flurry makes to the
state of the art are as follows:

• An automated framework which can quickly adapt to new
forms of attack,

• An easily installable, modular system which can be applied
to multiple system scenarios, including scientific workflows,
high-powered computing, user systems, and user-less servers,

• Dynamic datasets which are reproducible on demand,
• 95% reduction in graph storage size fromCamFlow capture to
disk space via summarization and de-duplication techniques,

• Provenance capture at multiple layers of the host system
with a mixture of attack types and benign behavior which
more realistically represents the complex systems in use than
previous datasets [3–6, 10],

• Demonstrated success in training and testing state-of-the-art
provenance graph learning systems using Flurry data,

• And a research tool for the future which facilitates new de-
velopment for emerging provenance graph learning systems.

2 RELATEDWORK

StreamSpot [6] is an original clustering-based anomaly detection
approach on heterogeneous streaming graphs. They solely analyze
browsing data they gathered and provided as a public dataset, and
downloading software in an effort to identify drive-by download
attacks as anomalous behavior. Unicorn [3] employs a version of the
Weisfeiler-Lehman subtree graph kernel algorithm. They offer two
static datasets which are majorly benign data and a few examples
of supply chain attacks. In PROV-GEm [5], the authors propose a
graph embedding framework based on graph convolutional net-
works coupled with relational self-attention to generate informative
representations of provenance graphs. ThreaTrace [13] conducts
work in node-level provenance graph representation learning. Both
these works re-use the Unicorn and Streamspot datasets because
of a lack of alternative datasets.

In conjunction with Unicorn, Han et al. highlight the lack of qual-
ity, publicly available provenance graph datasets in Xanthus [2] It
introduces the idea of a distributable virtual machine image with
configurable jobs for automated recreation of attack scenarios, but
requires the user to orchestrate the attack and configuration to
mimic real-life scenarios. This requires extensive systems knowl-
edge and makes the framework difficult to use for other researchers
focused on data science and not security.

Figure 1: System overview of components in Flurry.

3 FLURRY OVERVIEW

Flurry bridges the gap between security and systems engineer-
ing and provenance graph representation learning by automating
attacks and system behavior so as to provide the most genuine
scenarios for real learning. Flurry actively brings theoretical graph
representation learning to practicality by transforming real prove-
nance data into graphs which are storable, interpretable, and useful
for learning systems. In this section, we explain the details for
Flurry’s end-to-end pipeline with simplistic steps to go from the
click of a button to a provenance graph.

3.1 Host Simulation

Under the hood, Flurry comprises two major applications: one
for host simulation and another for provenance capture and graph
storage and generation. The simulation component is highly con-
figurable in order to run different kinds of attacks as well as benign
behavior. This allows the Flurry simulator to represent many kinds
of computing devices, such as a server used in a scientific workflow
or a user device, each of which is used for unique purposes and
will experience different threats and be suited for different kinds of
learning and security responses.

The host simulator is operated through a Python GUI or from the
command line. As a baseline, Flurry provides a set of attack scripts
which may be selected to run. Additionally, benign behavior that
corresponds to the attack scenarios or expected host behavior is also
able to be configured. The researcher may organize one or more of
these benign and attack behaviors in any pattern, and may execute
it a provided number of times. An example configuration may
be running the remote code execution attack, which simulates an
attacker attempting to set up a backdoor. Then, the attacker may try
some kind of data exfiltration. In order to provide some other benign
behavior, the configuration could include some website querying,
regular file reads and writes, and local command execution. The
execution does not have to be overly complicated - it is also possible
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to run one simple execution of logging in to a website, for example,
or multiple iterations of just that.

Figure 1 shows some of the pre-configured attacks in the red
portion of the simulation component, and regular behavior in the
green portion. For the web-server based attacks, Flurry deploys an
instance of the Damn Vulnerable Web Application (DVWA) [1] and
is able to record both client-side, browser-level provenance as well
as web server activity:

• XSS-Stored Attack: Javascript is injected and stored into
the webpage directly, causing a pop-up alert.

• XSS-Reflected Attack: Javascript injected into the web-
page temporarily through the questionnaire, causing a pop-
up alert.

• XSS-DOM Attack: Javascript is injected into the webpage
through the URL, causing a pop-up alert.

• Command Line Injection Attack: A bash command (pwd)
is injected and executed.

• SQL Injection Attack: A SQL query is injected into the
submission and executed.

• Brute Force Password Attack: The Hydra password crack-
ing tool is used to repeatedly enter username and password
combinations.

• SYN-Flood Attack: Using hping, several thousand TCP
packets are sent as fast as possible with the SYN flag set to
simulate a Denial of Service attack.

• Exfiltration Attack: Using hping, a s̈ecretf̈ile is written to
an ICMP packet and exported.

• Remote Code Execution Attack: Using hping, a secret
backdoor is installed on the local machine and the attacker
executes a script (the exfiltration attack) through the back-
door with elevated privileges.

Flurry’s host simulator also runs the following benign web and
network services:

• Post to a message board,
• Complete a submission box/questionnaire,
• Query for a new webpage,
• Enter user data into a database,
• Log in to the user’s account,
• Ping the machine at a normal rate,
• Write a file to stdout,
• Execute a script with user privileges locally.

In addition to provided attacks and benign behavior, the user
can provide their own Bash or Python script for Flurry to run. It
will similarly capture this behavior and generate a graph from it
using the other tools in the graph component. This unique feature
allows for Flurry to simulate experimentally specific or emerging
and new cyberattacks.

While a unique and useful feature for training, the host simula-
tion model is not the only thing Flurry is capable of turning into
provenance graphs. The capture, storage, and graph generation
components of Flurry may be installed modularly on a real system
so that its authentic behavior may be recorded and transformed
into graphs for learning and eventually resilient adaptation. Thus,
Flurry’s use cases extend the lifetime of the model’s process, from
training to real-time deployment.

Figure 2: Type graph of an XSS DOM Attack run on Flurry.

3.2 Provenance Graph Generation

For kernel-level data provenance, Flurry uses CamFlow [8], a Linux
kernel module which records security accesses and conveys them
to a userspace daemon in W3C-PROV [11] format which can be
configured to write to an MQTT topic with Flurry as a subscriber.
Flurry also has an application-layer provenance capture element
based on the libprovenance [8] userspace library designed by
CamFlow creators. For learning purposes, capturing data at multiple
layers allows for representation learning on multi-layer graphs.

Property Options

Granularity Nodes and edges may be set to coarse (W3C-
PROV, ex. entity, wasDerivedFrom) or fine (sys-
tem, ex. file, write) granularity.

Statistics A text file is generated which provides the graph
ID, list of scripted behaviors run, node/edge
counts, and a detailed description and count
of the node types, edge types, and unique
node-edge-node combinations (ex. task-used-
process_memory).

One-Hot
Encodings

A JSON-serialized file may be generated which
contains a dictionary of indexed node (or edge)
types and a one-hot encoded value for each node
in the graph describing which type it is.

Serialization A JSON file or gpickle may be generated which
maps each edge and its source and destination
node in a format which is easily transformed into
a tensor or numpy arrays for uploading.

Visualization A type graph as shown in Figure 2 may be drawn
as a clear visualization of the data.

Library Usage “CamFlow to Graph", or CF2G, Python library
functions included with Flurry can also be used
to directly create NetworkX [7] or Deep Graph
Library [12] data structures from Flurry Graphs.

Table 1: Configuration options for provenance graphs and

output formats.

From the host simulator, scripted executions are recorded with a
corresponding graph ID. Our redundancy reduction and data stor-
age strategy reduced the data size by nearly 95% in our experiments,
allowing for system scalability and the ability to detect low-and-
slow attack patterns over long periods of time with reduced risk
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of running out of memory. For real-time capture, Flurry will also
capture whole-system provenance for a configured amount of time
to create ID-ed, time-slice graphs. In order to generate a graph,
the researcher may use the command-line script to select a graph
ID. The automated framework will then query the database and
construct the graph with the properties selected from Table 1. The
framework may also be pre-configured to generate these graphs
after the attack is run.

As seen in Figure 2, we can summarize an attack execution
into a node-edge-node type unique representation, or type graph.
This diagram allows a researcher to rapidly visualize the difference
between attack and benign execution cycles and see type-based
anomalies. While the graph constructed for learning contains every
node and edge, comparatively this graph is much more explainable
for the human eye, which is further demonstrating how Flurry is
bridging the learning community and techniques with real causality
analysis capability.

4 DEMONSTRATION

In order to demonstrate the capability of Flurry to create prove-
nance graphs which may actually be used for training and testing
learningmodels, we conduct experiments using three well-cited het-
erogeneous graph learning frameworks: PROV-GEm [5], R-GCN [9],
and HAN [14]. We generate a total of nine thousand graphs across
all the attack and benign behavior described in the overview section
of this paper. To conduct our experiment, we randomly sample 20%
of the graphs as a test set and train the neural network models on
the remaining 80% of the data. For each cyberattack dataset, we
conduct five independent trials using randomly sampled test sets,
and we report the average F1 micro, precision, and recall for the
three GNN (Graph Neural Network) models.

In addition to the classification experiments using GNNs, we in-
vestigate the spectral properties of the generated data provenance
graphs to elucidate the structural characteristics of provenance
graphs generated from different attack scenarios. Any network
science-based approach to data provenance, whether it employs on
graph hashing, clustering, or graph neural networks, relies on the
assumption that anomalous or attack data provenance will differ
structurally from benign traffic—as all of these methods utilize struc-
tural information to generate representations of graphs. Flurry’s
multi-layer graph construction conforms to a rigorous multiplex
network definition, allowing us to generate the symmetric, positive

semidefinite supra-Laplacian matrix representations of provenance
graphs. From this construction, we can perform eigenvalue analysis
on provenance graphs using efficient numerical methods. This anal-
ysis provides important insights into the overall connectivity and
dominant layers (system operations) in benign and attack scenario
provenance graphs. These spectral properties also provide impor-
tant information as to why certain attack types are more easily
classified by GNN methods as compared with others. For certain
attack types, such as backdoor attacks, we note a greater distinction
between the eigenvalue distributions for benign traffic and attack
traffic. By contrast, attack types such as brute force are less distin-
guishable based on their spectral properties, indicating a greater
structural similarity between the benign and attack provenance
graphs. By employing a rigorous multiplex graph construction tech-
nique based in graph spectral theory, data generated by Flurry are
not only ingestible by common heterogeneous GNN frameworks
but also open up new avenues for cybersecurity practitioners to
investigate data provenance graphs and to conduct more in-depth
evaluation of down-stream learning tasks such as anomaly detec-
tion and attack classification. A real-time video demonstration of
Flurry is available. 1 Portions of the source code, ICD/user doc-
umentation for Flurry, and nine thousand pre-generated graphs
used in the GNN experiments are also publicly available. 2

5 CONCLUSION

Flurry is an end-to-end systemwhich enhances all aspects of prove-
nance graph representation learning, from simulating multiple an-
gles of new cyber attacks to capturing and recording provenance
to transforming it into learnable graphs. These graphs can be used
for both training and testing graph embedding models. Additional
graphs can be generated quickly or data reproduced for re-training,
extending the lifetime of the learning model and any detection
system it is a part of. Lastly, Flurry also offers modular adaptation
of its graph generation software in order to support dynamic graph
generation in real systems, furthering security practicioners’ and
learning researchers’ capabilities to expand frontiers in their respec-
tive research areas. As we demonstrate, Flurry realizes the union
of these two fields and will be a powerful tool in researching and
designing resilient anomaly detection systems using provenance
graphs.
1video demonstration: https://youtu.be/79yBLnL9PSg
2repository: https://github.com/mayakapoor/flurry

R-GCN HAN PROV-GEm
F1 Micro Precision Recall F1 Micro Precision Recall F1 Micro Precision Recall

Backdoor 99.4±0.5 99.4±0.5 99.4.0±1.2 97.2±2.9 99.5±0.4 95.4±5.3 97.5±2.1 97.0±3.2 98.0±1.7
Brute Force 67.2±2.6 67.0±10.3 68.1±2.8 62.2±0.6 52.6±8.4 67.1±6.8 60.0±4.9 84.6±8.6 58.1±6.5
Command Injection 75.9±2.0 76.4±4.9 75.8±3.8 78.1±2.2 75.2±5.2 80.1±3.6 71.3±0.8 80.1±6.2 68.5±1.9
Data Exflitration 94.1±0.6 95.1±2.3 93.4±2.4 90.6±2.4 91.8±3.7 90.2±4.4 88.9±7.3 92.0±4.1 89.1±12.5
SQL Injection 73.2±3.5 67.1±8.0 76.7±2.5 70.4±2.1 72.4±3.5 70.3±3.2 62.4±6.2 89.2±8.8 59.1±4.6
SYN Flood 98.1±0.9 98.6±1.3 97.5±1.0 97.4±0.7 96.7±1.0 98.1±1.2 94.1±5.1 89.7±10.3 98.5±0.4
XSS DOM 86.2±1.9 89.1±0.8 84.4.0±3.6 79.2±3.7 69.7±7.2 86.7±0.9 81.9±3.1 80.3±7.6 83.5±3.1
XSS Reflected 83.6±2.1 81.3±2.1 85.5±4.5 81.8±0.8 76.9±3.7 85.8±3.5 82.9±1.5 79.2±2.6 86.1±4.6
XSS Stored 85.5±1.2 84.9±2.8 86.3±1.6 83.3±1.7 91.5±2.6 79.0±2.7 78.2±3.3 76.0±5.8 79.7±3.0

Table 2: Graph classification results using Flurry data for training and testing.
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